Lipschitz and Fourier type conditions with moduli of continuity in rank 1 symmetric spaces

نویسندگان

چکیده

Sufficient and necessary results have been proven on Lipschitz type integral conditions bounds of its Fourier transform for an $L^2$ function, in the setting Riemannian symmetric spaces rank $1$ whose growth depends a $k$th-order modulus continuity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear operators of Banach spaces with range in Lipschitz algebras

In this paper, a complete description concerning linear operators of Banach spaces with range in Lipschitz algebras $lip_al(X)$ is provided. Necessary and sufficient conditions are established to ensure boundedness and (weak) compactness of these operators. Finally, a lower bound for the essential norm of such operators is obtained.

متن کامل

The Fourier Transform on Symmetric Spaces and Applications 1. the Fourier Transform

The symmetric spaces the title refers to are the spaces X = G=K where G is a connected semisimple Lie group with nite center and K is a maximal compact subgroup. The Fourier transform on X is deened by means of the Iwasawa decomposition G = NAK of G where N is nilpotent and A abelian. Let g; n; a; k denote the corresponding Lie algebras. We also need the group M = K A ; the centralizer of A in ...

متن کامل

GRADATION OF CONTINUITY IN FUZZY TOPOLOGICAL SPACES

In this paper we introduce a definition of gradation of continuity ingraded fuzzy topological spaces and study its various characteristic properties.The impact of the grade of continuity of mappings over the N-compactnessgrade is examined. Concept of gradation is also introduced in openness, closed-ness, homeomorphic properties of mappings and T2 separation axiom. Effectof the grades interrelat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monatshefte für Mathematik

سال: 2021

ISSN: ['0026-9255', '1436-5081']

DOI: https://doi.org/10.1007/s00605-021-01621-w